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SOME RECENT RESULTS ON THE THEORY OF TURBULENT FLOW
OF GASES OF HIGHLY VARIABLE DENSITY

Witold Szablewski

I. Introduction /5*

Some phenomena, fundamentally important for engineering, in

the mechanicslof turbulent flow are connected with large varia-

tions, in density. One topic presently ,of great interest is the

question of flow processes over the wings of high-speed aircraft

and over the bodies of rockets, in which the wall undergoes

vigorous heating, resulting in large density differences in the

turbulent boundary layer clinging to these objects. The same

situation can be found in high-speed jet engines. Another topic

which is very important technically is the turbulent expansion

of jets of widely varying density in the surrounding medium,

such as the expansion of a natural-gas jet in air; processes of

this type are also of great importance in the study of combus-

tion processes.

In the following, we will report on some theoretical results

relative to these phenomena, results obtained at the Research

Institute for Applied Mathematics and Mechanics of the German

Academy of Sciences. Our results pay part.cular attention -- as

will be discussed further -- to the influence of density fluc-

tuations.

Our flow models are restricted to turbulent flows which,

averaged over time, are steady, and have either plane or rota-

tion-symmetric character. Moreover, these flows are characterized

by having a principal flow direction: for planar flows werwill

designate this direction with x and the perpendicular direction

with y, and the corresponding velocity components with u and v,

*Numbers in the margin indicate pagination in the foreign text.
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so that Iv<<< Jul. In other words, these are flows which are

at a small angle to the x-axis.

These restricted cases include the most important boundary-

layer flows over profiles as well as jets.

II. Free-Turbulence Flows of Gases with Highly Variable Densities

By free turbulence is meant turbulent flows without limiting

walls, such as jets or wakes.

By comparison with boundary-layeruflws (along limiting

walls), these flows are of a much simpler nature, to the extent

that molecular effects appear negligible in the determination

of the mean state parameters of the mixing field. Moreover,

the assumption of constant pressure (p = const) has worked well

for flows in the subsonic region, to which we restrict ourselves.

A. Equations

For two-dimensional:flows which are steady when averaged

over time, one obtains the system of equations:

continuity:

au+!:,, 0(1)

momentum: /6'

-+-- =0, (2)

energy:

ax 0, (3)

concentration:

+ - o.

2



(Lines over thejsymbols indicate mean values over time.)

Here p stands for the density, T for the absolute tempera-

ture, cp for the specific heat at constant pressure, and c for

the concentration of a chemically different gas in the mixing

field.

In order to obtain equations for the mean state parameters,

the instantaneous state parameters are split, by the method of

0. Reynolds [1] into their mean values and the instantaneous

fluctuations

For instance, the continuity equation then becomes

a(QZ +e' U) + + '') (5)
8x Oy

The main principle in the further theoretical treatment is

the experimental discovery that for all state parameters with

the exception of the transverse component v of the flow, the

instantaneous fluctuations are small in comparison with the

mean values. In the flow models considered here, however, with

the main flow direction x, the instantaneous fluctuations v'

assume large values in comparison with the small transverse

component v [2].

Accordingly, in the continuity equation (5), we can neglect

p'u' in comparison with puu, bbutnbt p'v' in comparison with p v;

we then obtain

continuity:

j + a/ay (- V,6)
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In an analogous fashion, with

e uv 3+eu'v'±ue'v' ;

Qc,Tv sts cP T i + (p T)'V+CT e'v',

Se Gv Q -~eCv + c' v' + - e' v -

we obtain the equations

momentum:

~ a -  ../,v j 7 lv - ,...... .(7)

energy:

+ - -= ala-- (c.T)v'' .T t (8)

doncentration: ¢/7

Sa.U alaI--i C -- . (9)

Hence, from the standpoint of the mean state parameters,

the mechanism of turbulent mixing generates fluxes of mass,

momentum, enthalpy, and concentration. Intuitively, it can be

imagined that -- by analogy with the ideasgdf kinetic gas theory,

which assumes the transfer of fluid properties from one layer to

the next by means of molecules -- the transport in this case is

supplied by fluid elements.

Equations (6-49) [3] can be viewed as experimentallywwell-

established foundations. In order to use them to obtain information

on the field of mean state parameters, however, the correlations

appearing in the equations for the fluctuations must be described

in functional form using the mean state parameters. At the

current state of the theory, one must rely on hypotheses.

4



One hypothesis which has always proved workable for phenomena

of free turbulence and which is due to L. Prandtl [4] states that

in any cross section of the flow (section perpendicular to the

principal direction of flowl), correlations of the form m'v' are

proportional to the gradients of the mean state parameter m(y).

For the correlations of Eqs. (6-9), this gives

U, -- V, v'= E() y ,"

(o, T)' v' =E e(x)

, ( I0)
ay

- Ce' = E (x) 1y

The coefficient E allows for the circumstance that -- as

experiments have shown -- in transport from one layer to another,

the "mixing path" for the substantial properties is different

from that for the velocity which is exposed to pressure fluc-

tuations during transport (by the same carrier). According to

numerous measurements [1], the coefficient for rotation-symmetric

jets has the value

E = 2 (11)

The factor e(x) appearing in (10) has the dimensions of a

kinematic viscosity. The factors available for determining it

are the width of the velocity field bl(x) and the velocity range

lu max - u min Dimensional analysis then shows that

e(x) = q b() IlIax - zirn- i (12)

Of. e.g. L. Prandtl, Guide to fluid dynamics [Fihrer durch die
Strimungslehre], Braunschweig, 1949.
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where x1 is an empirical coefficient of the theory.

The calculations will be based on the following system of
equations 2 :

continuity:

ax (13)

momentum:

a--- 0 a-_ (1 4)

B.aor energy: /8

S=Ee(x) (15)a! 8x aya

concentration:

ax + a! =Ee(x)a (16)

We make special mention of the fact that this system of
equations is distinguished from other systems [5] by taking
density fluctuations into account.

B. Turbulent Expansion of Hot-Air Jets in Stationary or Moving
Surrounding Air

In the given form, the system of equations (13-16) can
assist in the calculation of effects of free turbulence of gases
with highly variable densities, under the restriction mentioned
at the outset. In rotation-symmetric flows, we must employ the
corresponding formulations of Eqs. (13-16) in cylindrical
coordinates.

On this basis4 we have in several works described theoretic-
ally the turbulent expansion of round hot-air jets in moving and

2W.Szablewski, op. cit.
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stationary surrounding air, for which there are ample measurements.

For instance, the jets from the engines of high-speed aircraft ifall

under this heading, but it also includes problemsr;of cooling by

means of injecting cold-air jets in surrounding hot air.

We already observe that the problem of turbulent expansion

of jets of varying chemical density in air (e.g. the turbulent

expansion of a natural-gas jet in air) leads to the same formalism

from the mathematical point of view.

The mixing field of a hot-air jet escaping from a round

nozzle can be depicted schematically as in Fig. 1:

_ Temperaturfewd b1

(i, Dlsenradus) C

dKernberelch e

ere Asymptotiche8erep I h

Fig. 1.

Key: a. Velocity field d. Core region
b. Temperature field e. Asymptotic region
c. Nozzle radius
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The core region is characterized by the core of the jet, /9

which has not yet been affected by intermixing. Further away
from the mouth of the nozzle, we have the asymptotic region, in
which the flow processes take place with geometrical and mechanical

similarity.

In conformity with the fact that there is a mixing path

for the transport of substantial properties such asnenthalpy

which is different from that for the velocity -- cf. Eq. (11)

-- the velocity and temperature fields exhibit different structures.

1. Turbulent Mixing of Two-Dimensional Hot-Air Jets

From the theory of the jet, we first demonstrate the charac-

teristic temperature effect or the effect of a large density

difference between the jet and the surrounding air, using the

following model:

In the immediate

vicinity of the edge of'1 the nozzle, the flow
field can be depicted

schematically as in Fig. 2,

if frictional effects are
Suo __ neglected. In other words,

two air jets of different

velocities and tempera-

tures first separated by
Fig. 2. a partition, would then

be mixed in an angular

region.

In the cross sections perpendicular totthe jet axis, the

flow field can be viewed as geometrically and mechanically similar;

the similarity coordinate is y/x. With the normalized factors

8
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i X = /0( = f-T , O To T) , Ip =r vi/o

and with the variable = ay/x containing the expansion factor

Io
."1

cI/ -0 (17)

(bl = Clx = mixing width of velocity field)

and substituting T for p in accordance With the gas equation

ST = const 1 (18)

derived from the assumption of constant pressure (cf. beginning

of Section II), the system of equations (13-15) reduces to a

system of the following differential equations [6];

continuity:
Uo -U 1  d7 d

u d,- -d (19)

momentum:

d2 + dp 2 u-u E+1 d(Oo/TI)x

d? dj . u, 1 + (/ ) X d (20)

energy:
+' _ + + 2 " _"_ _

d- d , I + (#/T ) d V, (21)

The underlined terms are those which would,not appear if the /10

density were constant.

Equation (19) is identical with

ai +  
0

and expresses the fact that the mixing is isochoric (volume-

preserving) under the assumption of constant pressure and neglect-

ing molecular effects.

9



The boundary conditions are

1 -0o
P, X for '-0 oo(22)

V- O for 7

The last condition says that the transverse component v

will vanish in the core of the jet.

For the special case (u0 - ul)/u 0 2 0, i.e. for jets of

almost identical velocities and otherwise arbitrary temperature

differences, the solution can be given explicitly as

1 ~1

with the constants 1 6 IT

2 1+ (8lT)' 2 -- + 1 +( (23)
and

S--.1

.. -I .. _

D(y) is the error integral function

0 () = e'dY.

The results are shown by Figs. 3, 4, and 53 , which can be /1

interpreted to show that without any appreciable change in the

generating angle, the wedge in which mixing occurs swings toward
the hotter jet as the temperature difference increases.!
31n Figs. ,, 4, and 5, a, = E-1/2a, and in Figs. 3 and 4,
arl = E-1/ cy/x.

10
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S ..... Fehlerintegrafunkton

70

-'1 5 -2,0 -1,5 -7,0 -05 0 5 1,0 1, 2,0

Fig. 3. Distribution of the longitudinal component of
the velocity.

Key: a. Error integral function

0,8

.. *.*........Feh/erntegralfunktlon

-z -2,0 1,5 -1,0 -45 0 ,5 1,0 7,5 2,0

:o , 4 YrFig. 4. Temperature distribution.

Key: a. Error integral function,

11



REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

oyb "" -0 c
6eschwino/gkeitsfe/d Temperaturfelod

u0 -2 ., r

(73o o T (0f1o o -7r)

0-0
-Z -

Fig. 5. Wedge of mixing zones.

Key: b. Velocity field
c. Temperature field

In the general case (uo - ul)/u 0  .0, the equations can /12

be solved only numerically [7]; the solution can be obtained

by using the iteration formulas

exp 2 1 (140 th

u 0uk up...- d d,C2D exp d + D

12



The integration constants C1 , C2, DI, and D2 are to be determined

in accordance with the conditions in (22). The resulting dis-

tributions again show the previously mentioned feature.

If the width a cl of the calculated velocity distributions

is read off between the limits 0.95 and 0.05, a comparison with

measurements for the empirical coefficient x1 (cf. Eq. (12) with

(17)) yields the value x1 = 0.0082.

By comparing the theory with experiments , we obtain Fig. 6,

which, in particular, shows the temperature effect. Practically

speaking, both measured jets opened into stationary air; while

the temperature of one jet was the same as that of the surrounding

air, the temperature of the other jet was 440 0 C higher. The

quasi-parallel displacement of the curves in the diagram shows

the rotation of the mixing wedge toward the warmer side.

It should be remarked that the theory given here -- as mentioned
at the outset in II, B 1,-- ignores the effects of friction
at the walls of the nozzle, and assumes rectangular velocity
profiles in the plane of the nozzle aperture. In applications
to practical problems, the momentum loss relative to the
theoretical model can, if necessary, be allowed for by follow-
ing a suggestion of 0. Pabst and introducing an effective nozzle
radius r*+as defined by the equation

/ uu.-u)i'dr= .2.

In Fig. 6, such a correction was made on the measurements of
0. Pabst; n* = (r - r )/x. Without this correction, the
measurements would indicate an even greater temperature effect.
Accordingly, the points on the experimental isotachs in Fig. 8
are plotted with the coordinates x/2r" and r/2r*

0 013

13
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juo-u I

a Messung H. Reichardt
b VDI - Forschung 74 (17942)

c0,
, .. -. Y/ 7,25 :

a • . g
bessung .cPabst, o. GA r 2,50

U. u. c. 800 ( es0 79) ,5

Bo -• 8,75

Sd7Theorie '

- ---............... W. TollNmien

A = 8 , ZAMM 6 (1926)

-0,2 -0,7 0 O,7 o,2 0,3

Fig. 6.

Key: a. Measurement
b. Association of German Engineers
c. Research
d. Theory

2. Core Region

Starting from the above model of turbulent mixing of two
planar air jets, the mixing field of the coreeregion (Fig. 1)
can be calculated in the following fashion [8]:

Transforming the rotation-symmetric system of equations

(13-15) for Fig. 1 to the jet coordinate:

(25)

we obtain, for constant a -- this assumption can be considered a /13
good approximation 5 -- in the variables

5From the physical standpoint, the above assumption implies no
loss of generality, since, according to a statement of W. Kauschus
[Ing. Arch. 31 (1962)], the case of a general function a(x) in
the core region can be reduced to the case a(x) = const by means
of a transformation.

14



a = - and = r i

thetstem of partial differential equations:

continuity:.

U - ") + + y = + (26)
u7 07- an 1i+ E7 '

momentum:

a 9, Jo + 12(-y + (E+ 1 ) (9/T) 8x8 lon, i . (6 ITO / )X. 1 + en

2(- .? (27)'U 02 - + U -- 0,

energy:

2X ax 12 fIuO u, + -VI 2 (0/T) aX I 22 ___+  .L , - + €7o/1,) +

2 U U!t a(28)

The underlined terms are again those which are absent in a

constant-density field.

The boundary conditions read /14

P' for

1 (29)
- 0 for .I -

(the jet axis has the jet coordinate r =-1/ ).

For ( = 0,. the system (26-28.) reduces to the equations (19-

21), which have already been discussed (Section I). Thus the

model of turbulent mi-king of planar ,hot-air jets gives us the

initial profiles.

15



The system of partial differential equations withjthe given

boundary conditions can be solved numerically by means of a con-

tinuation method, in which the mixing field is built up in

approximation and differential increments starting from the

initial profiles. Characterizing the method, the first step

requires the solution of a system of coupled ordinary differential

equations of second order, and this solution can be obtained by

means of iteration. The next steps then require only quadratures,

but the amount of computation involved increases considerably

with each further step.

Since the isotachs and isotherms within the core region are

only slightly curved (cf. Fig. 7), two or three differential

steps are sufficient with the formulation of the problem given

here (transformation to the jet coordinate).

From the results obtained, which apply to both stationary /15

and moving surrounding air, we display in Fig. 7 the field of

isotachs and isotherms for the two cases

(u0 - ul)/u 0 = 1 (instationary air); 0 /T 1 = 0 and 2.

As a comparison shows,tthe effect of 'temperattre is to shorten

the mixing field longitudinally and laterally; this shortening

corresponds to the swinging of the mixing wedge (Section I)

toward the jet axis with the vertex at the edge~of the nozzle.

It can also be seen from Fig. 7 that the temperature field has

a structure, with its greater width and lesser depth, which is

considerably different from that of the velocity field -- an

effect caused by the transmission ratio E = 2 (cf. Eq. 11).

From the comparison with measurements, we obtain Figs. 8 /16

and 9. The measurements reproducted in Fig. 8 refer to a

hot-air jet escaping from a round nozzle with a velocity of

6 See Footnote 4.
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0,2

I5 uo =, 2

095
0960 70

-- o-' ____,_,__-"_. .°__--- ----- -0195

0,7

/sec and a tempeature o C, the jet mixing with an

axis, the jets being hot air at temperatures of" 150 and 296%

0 " 1 5 • O

917

• -- 02

0.2

Fig. 7. Field of isotachs and isotherms.

400 m/sec and a temperature of 4001C, the jet mixing with an

air stream of speed 100 m/sec and normal temperature. Figure 9

shows measurements of velocity and temperature along the jet

axis, the jets being hot air at temperatures of 150 and 2960C

above that of the surrounding stationary air. There is good

agreement between theory and experiment.

We also mentioner:that the empirical coefficient was already

found to be xI 
= 0.0082 in Section i.
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0,9 -

010

0,8 - 1 o a 0

a C
* Geschwindigkelt MessUng S. Corrs/n Ond tM.S. Uberol -- Geschwlndlgkelt d

0,7 -o emperarur b INACA Rep. 998 (1950) r----- emperatur

S 2 6 8 10 12 11 , 16 18 20

Fig. 9. Velocity and temperature along the jet axis.

Key: a. Velocity c. Measurement
b. Temperature d. Theory
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3. Asymptotic Region

For the asymptotic region (Fig. 1) developing at a great
distance from the nozzle aperture, the system of equations (15-16)

reduces to the equations for a field of constant density. Geo-

metrical and mechanical similarity will be assumed for the mixing

field in cross sections at right angles to the jet axis.

As an example of the theoretical treatment [9], we describe

the case of a round hot-air jet in stationary surrounding air:

ul = 0.

By dimensional analysis, we obtain:

the similarity coordinate is

r/ro

the width of the velocity field is set equal to

bbro- B lro ,
the velocity distributions are (30)

U0  X/ro u0  xfr

and the temperature distribution is

with parameters B, U, O.

One then obtains the following equations:

continuity:

momentum: + (31)

energy:

19



The boundary conditions are

(O) = '(0 ) = , -, 0 . (3 2 ).
(f±oo) = (± 00oo)= 0,

The resulting solutions are /17
1 U 1 - (, 7)

+ -(1 +v or [1 + (a 1 2 )2

with the expansion factor i (33)7

The parameters U and 0 determining the axial functions

uA() _ U OA(x) El
0 s x/ro 0

-- the first function describes the velocity drop along the jet

axis, and the second the temperature drop along it -- and the

parameter B defined by b1 /r 0 = Bx/r0 are determined by means of

energy and momentum conservation, expressing the constant momentum

and energy flux through planes perpendicular to the jet axis:

the momentum integral

[QU2 rdr eo02. 0 (34)

(theiiddex 0 denotes the nozzle aperture)

yields, when the functions in (33) are substituted, the relation

S 1+ I(35)

he g gnergy integral

uirdr o= uoo o (36)

furnishes the relation

7 The formulas for the velocity field have already been given in
Grenzschichttheorie [Boundary layer theory] by H. Schlichting,
(Karlsruhe, 1951).

20



S(37)

By reading off the width oB of the calculated profile ¢, and

using the above relations, the following formulas are obtained

for the expansion factor a and the parameters

1

8 x, (a B) '

U= 1 e +(2/E) U, (38)
8 x(cr B) [1 + ()/Tf,)I2' 3 u

B = 8 x(a B) 2 .

One thing which can be seen from the formulas is that the

hotter the jet is, the steeper the drop in velocity and tempera-

ture along the jet axis. Since the transfer ratioEj:= 2 (Eq. l),

the temperature drops faster than the velocity along the jet axis.

The measurements depicted in Figs. 10 and 11 for the axial

functions at temperatures 150, 1700, and 3000 above that of the

outside air can be considered confirmation of the theory.

Now reading off the width a B of the calculated profile /19

-- as in Section 1 -- between the limits 0.95 and 0.05, compari-

son with the measurements in the asymptotic region in stationary

outside air yields xz = 0.0085 for the empirical coefficient and

x1 = 0.0082 when the surrounding air is in motion. The measure-

ments in the core region (Section 1) supplied xz = 0.0082. The

empirical coefficient xl can accordingly be considered essentially

constant over the entire region of turbulent expansion in a round

jet from the nozzle aperture to the asymp ote.

21



" 7,1 7,0 7,5 2,0

-- 7- /18
S .- 007 -

a . S A UD l

.as i ' -
a6 I " , -• . •

02' ' . 7,0 -0,7

• 457 Messung S. Corredn und MS. Ueraol ,
022 V 1,0 NocI Rep. 998 (1950) -07

rheore .b --a

ig
-- 49 u0

C 7 8 3 10. 20 30 $o 60 60 70 80 90 100

Fig. 10. REPRODUCIBILITY OF TH]E

Key: a. Measurement b. Theory ORIGINAL PAGE Is POOR
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III. Energy Conservation for Compressible Turbulent Boundary Layers

The flow processes in jet engines and in boundary layers

adhering to objects in flight are known to differ from exterior

flow, which can be considered as potential flow, in that molecular

and turbulent effects such as friction, heat conduction, and

dissipation, become crucial in the boundary layer. This alone

is sufficient to justify the great technical importance of

boundary-layer research in the theory of jet engines of all types.

When flight velocities are large (supersonic and hypersonic

velocities), the wall is heated much more intensely than in

exterior flow, because of compression and particularly dissipation.

Since, according to the ideas of boundary-layer theory,tthe.r

pressure in cross sections perpendicular to the wall can be

viewed as constant, the state equation of ideal gases at constant

pressure

pT = const,

implies that the variation in temperature over the thickness of

the boundary layer causes the density to vary over the same

region. Hence, in the case of turbulence, we are dealing with

a compressible turbulent boundary layer.

The free-turbulence flows discussed in Section II differ

fundamentally from the turbulent boundary-layer flows in that

molecular effects in the latter are not negligible. As far as

the transport processes (friction, heat conduction) are concerned,

molecular transport is no longer negligible in comparison to

turbulent transport in a thin zone of the boundary layer adjacent

to the wall, since here the wall suppresses the macroscopic

turbulent mixing process; this is the so-called laminar sublayer

of turbulent boundary layers, which, including a transition region,
is only about 1% as thick as the boundary layer itself. Lastly,
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with large relative air speeds, dissipation in the entire boundary

layer is a crucial term in the energy balance.

We are still a long way from a theory for turbulent boundary

layers, even one of merely phenomenological character such as the

theory of free turbulence presented in Section II. Theoretical

statements on the mean state parameters are available in essence

only for a fully turbulent partial layer (i.e. with negligible

molecular transport) adjacent to the laminar sublayer, the

partial layer being characterized by the negligibility of the

convection of the flow and of the external forces, and hence of

the pressure gradients of the external incompressible fluid flow

which direct the boundary-layer flow. Neglecting both terms is

legitimate because of the nearness of this layer to the wall:

the flow clings to the wall, which makes convection insignificant

in this case; also, the pressure gradient -- unless we are very

near separation of the boundary layer -- is negligible in com-

parison with the large values assumed for the tangential stress

forces. The layer characterized in this way is admittedly

relatively thin; however, because of the very steep velocity and

temperature gradients close to the wall, it includes a relatively /20

large proportion of the total velocity rise or temperature drop

across the boundary layer. This gives this layer its importance. /2 0

Consistently allowing for the density fluctuations occurring

in the turbulent boundary layer, we obtain a version of the

energy-conservation equation fSr this layer which is different
8

from previous formulations . Density fluctuations will inevitably

occur in compressible turbulent boundary layers because of the

density distributions existing in these layers. This is immediately

evident, since the process of turbulent mixing can be thought of

8 Cf. e.g. E.R. van Driest [Jounr. Aeron. Sci. 18,(1451L1951)]
and J. Rotta [Z. Flugwiss. 7, 204 (1959)].
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as a consequence of the migration of whole fluid particles from

one layer to the next. Momentum and energy conservation then

furnish a new law for the relation between temperature and velocity

in this layer. We observe that this relation plays a fundamental

role in practical computation procedures for compressible tur-

bulent boundary layers.

In accordance with the ideas of boundary-layer theory, the

computation allows for laminar transport due to molecules (which,

for the time being, we continue to take into:iaccount), turbulent

transport due to fluid elements, and their gradientsoonly in the

direction at right angles to the wall.

We have already formulated in Section II the main principle

for determining the flow-process correlations crucial for

turbulent transport.

For the time being, we can retain the continuity equation

(6) unchanged.

continuity:

a ail (39)

If we neglect the convection terms in the momentum equation (7),
but still allow for molecular momentum transport, we obtain by

integrating over y

momentum:

OY(40)

Where p(Du/ay) with the viscosity coefficient p represents the

mean laminar shear stress and TO the mean wall shear stress

(here too, the index 0 denotes the mean values at the wall).

Equation (40) obviously describes a layer of constant shear stress.
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In complete generality, the energy equation reads

div[T+u "t' ) b 8a(AgradT)

t l..,lau 0(41)
B a/ay{( ayi i3 . a +

Here z is the coordinate perpendicular to the x-y plane and w is

the corresponding velocity component; ~ is the coefficient of

thermal conduction.

REPRODUCIBILITY OF THE
We first observe that for.vbbundary layers ORIGINAL PAGE IS POOR

U2 + V2 + W2  1 -

By the main principle, we again obtain

Consequently /21

+ IV + W2 aay( + a/ayK C (zic ) + C, T V

+ a/ay-} + a/ay? (--') - (42)

The terms in the angular brackets on the right side represent

the turbulent energy transport.

Keeping the continuity equation (39) in mind, we can replace

T in (42) by 6 =T - T0. If the convection terms are again

neglected in this layer, integration over y yields the equation
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Accordingly, this is a layer of constant energy transport.

When restricting matters to the completely turbulent layer,

we can ignore the molecular transport terms in (40) and (43) in

comparison with the turbulent ones. Then, using (40), we finally

obtain from (43) the following new form of the energy equation

20' + L V) (44)

The two underlined terms can be thought of as the dissipa-

tion (frictional heat) of the flow. The noteworthy result is

that in addition to the term T u,wwhich represents both the

dissipat.iannof the principal motion and the energy drawn from

the latter to preserve the perturbation motion, there is also

a term u p'v'/2, which can be viewed as the diffasion of kinetic

energybby means of turbulent mass transport.

As a consequence, which we will test by experiment, we derive

from (40) and (44) a new relationship between temperature and

velocity for this layer.

In order to use Eqs. (40) and (444) to obtain information on

the mean state parameters, we first need a hypothesis (as in

Section II) linking the fluctuation correlations appearhig'c in

the equations with the mean state parameters. For our purposes,
it is sufficient to employ the very general approach of Boussinesq:
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In these equations, e(x,y) has the dimensions of a kinematic

viscosity. The coefficient E represents the so-called trans'fer

ratio (cf. Section II).

While the first two trial solutions are common approaches

in the theory of turbulent boundary layers, the following should

be mentioned about the last equation: by analogy with kinetic

gas theory, the above equations represent the idea that fluid

properties are transported from one layer to the next. The

first two equations express this for velocity and temperature.

Since, in a compressible boundary layer, different layers will

also have different densities, we must also assume a correspohd"

ing transport of density from one layer to the next. The last /22

equation is just the appropriate formulation.

We thus obtain: REPRODUCIBILITY OF THE
momentum: ORIGINAL PAGE IS POOR

y- a 1 ,l (46)

energy:

V E y: (47)

By using the state equation for ideal gases at constant

pressure
Q T eo To

we can replace p by T = TO + 6.

Now introducing the so-called shear-stress velocity v, =
= T70P 0 , the dimensionless coordinates

-,0
28 u and , =
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REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

O-

(1+x)E
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03

0 0
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Fig. 12.

Key: a. Theory
b. Measurement

and the parameters

.... Mo = ,M,--)
cp QiTo . (Y 1) c, To

we obtain
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momentum:
S1 aw. ax/an

1= T X a7 Ea) 0 X)21'oxJ' (48)

energy :

, .A..( .1) M w .E axl / I + (y - 1) 2 M .
.(49)

These two equations furnish the new relation between tempera-

ture and velocity

, (1 ) =O[1+Aow-(y-1)M, (50)

with the integration constant C.

We can also write

E Ig (I + ) = Ig 0 -( 1) M Ig

(By comparison, older theories;,which ignore the density fluc-

tuations,p,)provide the relation

E (1+ ) =1 + A 0 w1 -.(y - 1 ) + const)'.

To compare this with an experiment, we used an American

measurement [11] in the hypersonic range. The measurement supplied

E = 1.1 (51)

which is consistent with the findings of other authors. From /23

this comparison, we exhibit Fig. 12, in which the given Mach

numbersIM, refer to the Mach numbers of the flow outside the

boundary layer. In the graphic representation of Fig. 12,

relation (50) is depicted by a collection of rays with the

zero point as the origin. This comparison can be taken as con-

firming the new relation.
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